5,866 research outputs found

    U(1)U(1) gauge vector field on a codimension-2 brane

    Full text link
    In this paper, we obtain a gauge invariant effective action for a bulk massless U(1)U(1) gauge vector field on a brane with codimension two by using a general Kaluza-Klein (KK) decomposition for the field. It suggests that there exist two types of scalar KK modes to keep the gauge invariance of the action for the massive vector KK modes. Both the vector and scalar KK modes can be massive. The masses of the vector KK modes m(n)m^{(n)} contain two parts, m1(n)m_{1}^{(n)} and m2(n)m_{2}^{(n)}, due to the existence of the two extra dimensions. The masses of the two types of scalar KK modes mϕ(n)m_{\phi}^{(n)} and mφ(n)m_{\varphi}^{(n)} are related to the vector ones, i.e., mϕ(n)=m1(n)m_{\phi}^{(n)}=m_{1}^{(n)} and mφ(n)=m2(n)m_{\varphi}^{(n)}=m_{2}^{(n)}. Moreover, we derive two Schr\"{o}dinger-like equations for the vector KK modes, for which the effective potentials are just the functions of the warp factor.Comment: 15 pages,no figures, accepted by JHE

    Cooling mechanical resonators to quantum ground state from room temperature

    Full text link
    Ground-state cooling of mesoscopic mechanical resonators is a fundamental requirement for test of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong and weak coupling regimes. The lowest cooling limit is derived analytically at the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Qm>2.4nthQ_{\mathrm{m}}>2.4n_{\mathrm{th}% }, with QmQ_{\mathrm{m}} being the mechanical quality factor and nthn_{\mathrm{th}} being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when mechanical QQ-frequency product Qmν>1.5×1013Q_{\mathrm{m}}{\nu>1.5}\times10^{13}, and both of the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators

    Null geodesics and gravitational lensing in a nonsingular spacetime

    Get PDF
    In this paper, the null geodesics and gravitational lensing in a nonsingular spacetime are investigated. According to the nature of the null geodesics, the spacetime is divided into several cases. In the weak deflection limit, we find the influence of the nonsingularity parameter qq on the positions and magnifications of the images is negligible. In the strong deflection limit, the coefficients and observables for the gravitational lensing in a nonsingular black hole background and a weakly nonsingular spacetime are obtained. Comparing these results, we find that, in a weakly nonsingular spacetime, the relativistic images have smaller angular position and relative magnification, but larger angular separation than that of a nonsingular black hole. These results might offer a way to probe the spacetime nonsingularity parameter and put a bound on it by the astronomical instruments in the near future.Comment: 15 pages, 5 figures, 1 tabl

    Cascading failures in coupled networks with both inner-dependency and inter-dependency links

    Full text link
    We study the percolation in coupled networks with both inner-dependency and inter-dependency links, where the inner- and inter-dependency links represent the dependencies between nodes in the same or different networks, respectively. We find that when most of dependency links are inner- or inter-ones, the coupled networks system is fragile and makes a discontinuous percolation transition. However, when the numbers of two types of dependency links are close to each other, the system is robust and makes a continuous percolation transition. This indicates that the high density of dependency links could not always lead to a discontinuous percolation transition as the previous studies. More interestingly, although the robustness of the system can be optimized by adjusting the ratio of the two types of dependency links, there exists a critical average degree of the networks for coupled random networks, below which the crossover of the two types of percolation transitions disappears, and the system will always demonstrate a discontinuous percolation transition. We also develop an approach to analyze this model, which is agreement with the simulation results well.Comment: 9 pages, 4 figure
    corecore